
Kexec Evolutions for LinuxBoot
A series of improvements to userspace

kexec in LinuxBoot
David Hu SWE, Google

Self link: bit.ly/3By04Aa

https://bit.ly/3By04Aa

Menu

● Introduction

● Getting started

● Classic kexec load Arm64 Image

● Kexec workstream

● Q & A

2

Introduction

● Recap

○ LinuxBoot relies on kexec sys call to load into next kernel to function as a

bootloader

○ 2 kexec syscalls exist today link

■ file load, kernel_fd, initrd_fd, *cmdline, flags ✅
■ classic kexec load, entry, nr_segments, segments, flags

● Problems with file load

○ File load can spike memory usage, though only transitory

■ e.g. need > 3 * N ram, given target image size as N.

○ Can’t edit DTB

3

https://man7.org/linux/man-pages/man2/kexec_load.2.html

Getting started

● Problem: netbooting 1.1G image on machine w/ 4G ram would OOM

● Pre-kexec culprits

○ CachedReader caches image as it reads, leading to an additional copy lingering around😡
○ io.ReadAll triggers exponential slice re-allocations 😡

■ Golang runtime also reserves additional memory from

OS to enable heap growth

○ Make a read-only copy of kernel+initrd before kexec 😡

4

brk

heap

https://github.com/u-root/u-root/blob/ffd18dd3fd0c3daed68ab08a37d14cd3968158f3/pkg/uio/cached.go#L33
https://go.dev/src/io/io.go#L654

Getting started: Compress kernel and initrd

● Now we only have one copy of kernel and initrd in userspace tmpfs before kexec

5

● But…there is a catch: Kernel (file load kexec syscall) would make another copy

to begin with further processing 💔

Getting started: Compress kernel and initrd

● In kernel code, file load kexec syscall reads kernel and initrd as a whole, leading

to second copy. (Used to prepare for kexec_segment for further execution)

● One possible optimization is to compress initrd and kernel before kexec

● It adds on X mins in compression to boot time (e.g. gzip 1.1G image can take

5mins). 😡😡😡😡😡
6

Compress kernel+initrd
in userspace

userspace

kernel
+ initrd
compressed

file load
kexec

decompress

userspace kernel

kernel
+ initrd

file load
kexec

kexec
segments

kernel

kexec
segments

Getting started: Additional copy in kernel space

7

userspace kernel

kernel +
initrd

file load
kexec

kexec
segments

● A deeper look: how file load kexec processes kernel and initrd files.

kexec
segments

kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, …) (linux/kernel/kexec_file.c)

kernel_buf
initrd_buf

kexec_segments
Arch specific
image loader

kimage_file_prepare_segments

kexec_add_buffer
kexec_segments ()

userspace kernel

kernel +
initrd

file load
kexec Separate

free ram
regions

stages it for
final

relocation

mem
memsz

Getting started: Additional copy in kernel space

● Can we eliminate one more copy ? and which one ?

8

kexec
segments

userspace kernel

kernel +
initrd

file load
kexec Separate

free ram
regions

Stages it for
final

relocation

A B C

Classic load Arm64: The contract

Boot loader should provide (as a minimum) the following:

● Setup and initialise the RAM

● Setup the device tree

● Decompress the kernel image

● Call the kernel image

Before calling the kernel image

● Primary CPU general-purpose register settings

● …

more: kernel.org/doc/Documentation/arm64/booting.txt

9

https://www.kernel.org/doc/Documentation/arm64/booting.txt

Classic load Arm64: Implementation

(In LinuxBoot userspace, implement following in golang)

● Process Image, Initrd and kernel cmdline into kexec segments

○ Parse memory layout

● Setup device tree

○ Use FDT in from sysfs to begin with (LoadFDT(dtb io.ReaderAt))

○ Purge existing boot param properties from chosen node (sanitizeFDT(fdt *dt.FDT))

○ Add initramfs location

10

https://github.com/u-root/u-root/blob/c801d2453c28693948879381d90773160f9b45b0/pkg/boot/kexec/memory_linux.go#L217
https://github.com/u-root/u-root/blob/main/pkg/boot/linux/load_linux_arm64.go#L70
https://github.com/u-root/u-root/blob/main/pkg/boot/linux/load_linux_arm64.go#L76

Classic load Arm64: Implementation

● Set up an executable trampoline with instructions to

○ Save kernel entry to a general purpose register, which we can jump / branch

into

○ Save dtb address to x0

○ Zero out x1, x2, and x3

● Then make the syscall

○ long syscall(SYS_kexec_load, unsigned long entry, unsigned long

nr_segments, struct kexec_segment *segments, unsigned long flags);

11

Classic load Arm64: Trampoline

● Golang assembly, mimicking what kexec-tools does ?

● David Dillow at Google, came up with a simple and minimal trampoline w/o

needing to write any explicit assembly code 🤔

12

Kernel Kexec Userspace (C) LinuxBoot (golang)

● SHA256 verifications

● Load kernel entry, and dtb address by

symbols in assembly

● ldr x17, arm64_kernel_entry

● ldr x0, arm64_dtb_addr

● Kernel and dtb addresses are placed at a PC
relative memory location (fixed), which are then
loaded into respective registers by PC relative
instructions (LDR)

LDR (PC-relative)
Load register. The address is an offset from the PC

https://github.com/horms/kexec-tools/blob/main/purgatory/arch/arm
64/entry.S

https://github.com/u-root/u-root/blob/main/pkg/boot/linux/load_linux_
arm64.go#L189

https://developer.arm.com/documentation/dui0802/a/A32-and-T32-Instructions/LDR--PC-relative-
https://github.com/horms/kexec-tools/blob/main/purgatory/arch/arm64/entry.S
https://github.com/horms/kexec-tools/blob/main/purgatory/arch/arm64/entry.S
https://github.com/u-root/u-root/blob/main/pkg/boot/linux/load_linux_arm64.go#L189
https://github.com/u-root/u-root/blob/main/pkg/boot/linux/load_linux_arm64.go#L189

Classic load Arm64: Trampoline

13

instructions data

Imaginary 4 bytes block

load
kernel
entry

load
dtb
address

zero out
x1, 2, 3

kernel
address

dtb
address

branch
into
kernel
entry

Classic load Arm64: load kernel entry

● 0x580000c4 // ldr x4, #0x18 (PC relative: trampoline[6 and 7])

 (Armv8), C6.2.131, LDR (literal):

14

0 1

64
bit

0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0

1 0 000

X4

0110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6
24 (address offset), imm19 * 4

4c000085

Classic load Arm64: load dtb address

● 0x580000e0 // ldr x0, #0x1c (PC relative: trampoline[8 and 9])

 (Armv8), C6.2.131, LDR (literal):

15

0 1

64
bit

0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0

1 0 000

X0

1110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7
28 (address offset), imm19 * 4

0e000085

Classic load Arm64: Trampoline
● “Zero-Assembly” trampoline is position independent (PIC)

L1 var trampoline [10]uint32

L2 trampoline[0] = 0x580000c4 // ldr x4, #0x18 (PC relative: trampoline[6 and 7])

L3 trampoline[1] = 0x580000e0 // ldr x0, #0x1c (PC relative: trampoline[8 and 9])

 L4 // Zero out x1, x2, x3

L5 trampoline[2] = 0xaa1f03e1 // mov x1, xzr

L6 trampoline[3] = 0xaa1f03e2 // mov x2, xzr

L7 trampoline[4] = 0xaa1f03e3 // mov x3, xzr

L8 // Branch register / Jump to instruction from x4.

L9 trampoline[5] = 0xd61f0080 // br x4

L10 trampoline[6] = uint32(uint64(kernelEntry) & 0xffffffff)

L11 trampoline[7] = uint32(uint64(kernelEntry) >> 32)

L12 trampoline[8] = uint32(uint64(dtbBase) & 0xffffffff)

L13 trampoline[9] = uint32(uint64(dtbBase) >> 32)

● https://github.com/u-root/u-root/blob/main/pkg/boot/linux/load_linux_arm64.go#L189 16

https://github.com/u-root/u-root/blob/main/pkg/boot/linux/load_linux_arm64.go#L189

Classic load Arm64: Outcome

17

A B C

Classic
kexec

userspace kernel

kernel +
initrd

file load
kexec Separate

free ram
regions

Stages it for
relocation

kexec
segments

kexec
segments

I/O

(in tmpfs) (go runtime)

Classic load Arm64: One more thing 🎉

18

A

kexec
segmentsI/O

(files in tmpfs) (go runtime)

userspace

kernel +
initrd

MMU

Physical page frames

… …

mmap

(files in tmpfs) (go runtime)
userspace

kernel +
initrd

MMU

…

Physical page frames

A

kexec
segments

mmap instead of
I/O

 Question to the audience: can we do even better ?

Classic load Arm64: Final outcome

19

A
B

C

Classic
kexec

userspace kernel

kernel +
initrd

file load
kexec Separate

free ram
regions

Stages it for
relocation

kexec
segments

kexec
segments

(files in tmpfs)(go runtime)

Call for action: Kexec workstream

● Open Source Firmware Foundation kexec workstream

● Get involved

○ Share your problems

○ Try out fixes by others

○ Contribute

20

https://docs.google.com/document/d/15D0xImlLwvqqHk8QoaVyl918-RkDojo3mxCeknWW5OE/edit#

Questions?

21

